Regenerative Agriculture is Trending in South Africa

Regenerative agriculture

Arable farming systems across South Africa are going through a change. Forced by a variable climate and financial pressure, regenerative farming models are increasingly being implemented on cropping, dairy and beef operations as a result. Ethical motivations and issues of family succession are also reasons for adopting the principles of Regenerative Agriculture (RA).

Recent research that I conducted in Northern Kwa-Zulu Natal and the Eastern Free State in South Africa explored the RA concept and investigated how widely it is being applied and why. The initial line of questioning posed to 59 farmers across this part of South Africa focused on weather data, its utility and how farmers are handling the climate-associated challenges. For these farmers, climate change is their primary concern, over and above political and economic issues. Of the 59 farmers who participated in the study, 42 were employing the principles of RA, to some extent, to mitigate the effects of variable and extreme weather. Farm sizes ranged from 500 to 25,000 acres and included combinations of dairy, ranching and cropping operations, with game, fruit, forestry, and vegetable production often practised on diversified farms.

Across this region of South Africa climate patterns are changing. Rainfall is more intense and isolated with dry spells occurring more and more regularly. The number of days with temperature highs of over 30 degrees centigrade is rising, and the winter frosts which control ticks and the diseases they carry are less regular. Unreliable rainfall is, however, the chief challenge. One farmer stated that in the 2016/2017 season, he received a third of his annual rainfall in less than 48 hours. This has severe consequences for arable farms which need to maximise the capture and storage of rainfall as it arrives.

As a result of changing weather patterns, capturing rainfall where it lands and retaining it in the soil as green water has become of paramount importance to both cropping and ranching systems. The primary determinants of rainfall infiltration rates are land cover and soil health, and therefore farmers are turning to the regenerative model. RA preaches almost constant diverse vegetative cover on the surface which slows runoff and encourages infiltration, while healthy, living and structurally intact soils have a greater capacity to hold moisture in the root zone. Rebuilding the structure of soils that had been routinely pulverised by heavy tillage for decades, became the first step taken by farmers experimenting with the RA concept. A zero-till approach and the use of multi-species cover crops are now seen by farmers as critical in efforts to combat a variable climate; however, economic forces have driven the regenerative agenda further.

Since 1994 agricultural subsidies have been steadily withdrawn in South Africa to a point where farmers currently receive almost no government assistance whatsoever. While this has led to a decline in the total number of farmers, productivity and efficiency have increased markedly. It has been a case of survival of the fittest with the most capable farmers, the majority of which still run family farms, buying out those around them who failed to adapt to declining state support. At present, financial pressure is higher than ever with the rising costs of agricultural inputs and depressed global food prices. Regenerative agriculture has helped farmers reduce production costs.

With less or no soil disturbance, diesel bills are being slashed as life returns to the soil. At the time of interview, one farmer was selling off his 400+KW tractors in favour of machines half as powerful. “To work my soil, my tractors used to work in first gear, and I had to use a pick to break the surface. Now they fly along, and I can use my hand to dig out clods of living soil.” The integration of livestock into cropping regimes, often using a mob grazing model, along with diverse covers and near permanent soil cover is re-injecting organic matter into the soil and optimising the liquid carbon pathways that feed the microbial communities helping make nutrients available to the plant. This can result in a declining need for synthetic fertilisers, greater moisture availability and critically, substantial financial savings.The full article is for subscribed members only. To view the full article please subscribe. It’s FREE!Log In Register


  • David Smedley is a recently graduated PhD student from Kings College London, researching low cost techniques that enable farmers to overcome dry spells and climate variability, with a focus on smallholder farmers and poverty alleviation in Sub-Saharan Africa. Recently David has worked with DEFRA to produce evidence statements on antimicrobial resistance in the environment, and with the Stockholm International Water Institute on promoting investments into rainfed agriculture in Africa.


Please share this article with your friends!

Related Articles

  • All
  • Awards
  • Business
  • Crops
  • Education
  • Energy
  • Featured Article
  • Finance
  • Health
  • Hospitality
  • Human Resources
  • Irrigation
  • Latest News
  • Lifestyle
  • Livestock
  • Recipes
  • Soil
  • Under cover farming
  • Water
WordPress › Error

There has been a critical error on this website.

Learn more about debugging in WordPress.